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1.0  INTRODUCTION

\
4

Optical signal processing makes possible rapid coordinate transformatioms,

optical pattern recognition, and matrix-matrix multiplication. In the present
contract, DSI has demonstrated several significant accomplishments. Among these
are: (a) the design and operation of a spatial-frequency-multiplexed coherent
optical processor; (b) the application of outer product operation to matrix-
matrix multiplication; and (c¢) the description of three methods for performing
Hankel transforms with optical or digital processors.
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2.0 RESULTS

The accomplishments described below are important in a number of areas.
The optical information processing projects described have application to mode
analysis of high energy laser resonators, alignment of space telescopes, and
tomographic reconstruction. The progress in coherent optical moment generation
is of value in image data compression and optical pattern recognition of
statistical images. Finally, the acoustooptic matrix signal processor con-
structed is useful in radar signal processing, passive sonar surveillance, and

adaptive beam forming.
2.1 MULTIPLEXED COHERENT OPTICAL PROCESSOR

A coherent optical processor designed for calculating generalized moments
of a two—dimensional pattern1 is described in Enclosure (1). 1In order to provide
for parallel computation of multiple moments, a spatial-frequency multiplexing
scheme was used. A computer-generated holographic mask was shown to provide
complete flexibility in choosing moment generated functions. The calculation
of five geometric moments was experimentally demonstrated for simple objects.

These geometric moments correspond to x, y, Xy, x2, and yz.

A computer-generated holographic mask was constructed to compute the geo-—
metric moments corresponding to the generating functions, x, y, xy, xz, and y2.
In order to reduce the dynamic range problems, when the hologram was construct-
ed the scale of the generating functions was chosen such that the linear and
quadratic-moment values would be equal for a symmetric object threefourths the
linear size of the mask. The spacing chosen avoided crosstalk between adjacent
moments. Since several generating functions are encoded on a single mask, the

optical processor is able to calculate several moments in parallel.
2.2  APPLICATION OF OUTER PRODUCT OPERATION TO MATRIX-MATRIX MULTIPLICATION

The systolic architecture proposed by Caulfield and Rhodes? for matrix-

matrix multiplication was utilized. This approach bypasses the two-dimensional

2-1
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real time spatial light modulators required by other architectures. Various
implementations of this optical processor3 can use one of the following modula-
tion mechanisms: (a) electrooptic, (b) direct driven LED array, and (c) acousto-

optic (e.g., Bragg cells). These three approaches are described in Enclosure (2).

2.3 OPTICAL AND DIGITAL TECHNIQUES FOR PERFORMING HANKEL TRANSFORMS

Generalized Hankel transforms are useful in analyzing the effect of cir-
cularly symmetric optical systems on arbitrary inputs. Some examples of such
systems are complex laser resonators and space telescopes. Three methods for
performing Hankel transforms with optical or digital processors were described4.
The first method was applicable when the input data is available in cartesian
(x-y) format and used the close connection between generalized Hankel transform
and the two—-dimensional Fourier transform in cartesian coordinates. The second
method was useful when the input data is in polar (r-6) format and used change
of variables to perform the nth order Hankel transform as a correlation inte-
gral. The third method utilized the von Neumann addition theorem for Bessel
Functions to extract the Hankel coefficients from a correlation between the
radial part of the input and a Bessel function. Initial experimental results®
obtained for optical implementation of the first two methods are presented

in Enciosure (3).

The analysis of complex wptical systems is greatly facilitated by two-~

dimensional Fourier techniques. The effect of an optical system on arbitrary
inputs is easlily described by a transfer function in the Fourier domain. Gen-
eralized Hankel transform is similarly useful when dealing with a circularly

?q symmetric (or axisymmetric) system for arbitrary inputs. Thkis situation is

E encountered in performing mode analysis on the output of a slightly misaligned

laser resonator as well as in aligning space telescopes. An optical method for

performing mode analysis via generalized Hankel transform has the unique advan-

| tage of preserving the phase of the wavefront to be analyzed.
3
K
2-2
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Multiplexed coherent optical processor for calculating
generalized moments
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A coherent optical processor capable of calculating generalized moments of a two-dimensional pattern is described.
A spatial-frequency multiplexing scheme is used to provide for parailel computation of multiple moments. The
use of a computer-generated holographic mask permits complete flexibility in choosing moment-generating func-
tions; e.g., the functions could be complex or have a predetermined weighting function. Experimentaily, calcula-
tion of five geometric moments (corresponding to x, y, xy, 22, and y?) is demonstrated for simple objects. The spe-
cial features of the proposed coherent optical processor and its space-bandwidth requirements are also discussed.

The role of moments and moment invariants as global Now if the function g(x, y), which multiplies the input
features in pattern recognition is well known.!-3 Co- f{x, y), has the form

herent optical processors. for calculating geometric M

moments of images have been recently proposed,** but gx,y)= 3 Z &mn(x, y)explj(muox + nvgy)],
both of these processors are restricted to calculating m=—M n=-N

geometric moments only. In addition, the processor of (4)

Pef. 4 is rather complicated, involving interferometric .
setups; the processor of Ref. 5 has an added factor 1/ gl:ﬁ:geg:::f;:zzgt;?::;cglg roc(er;s (;r TAI} conta(l)n the
mn

(p'q!) associated with the pgth moment, further com- Mandn = =N, . "N provided that the umt
pounding the dyna'mlc-range problem§. In this Letter carrier {requency (uo, vo) sat:sﬁes the conditions dis-
we propose a spatxal-frequency-multlgleged‘coherent cussed below. Figure 1 is a schematic diagram of the
optxcgl processor g:hat overcomes phese hmx_tatxons. We optical processor. It consists simply of a mask con-
describe the design and operation of this processor, taining glx, v) described by Eq. (4) and a Fourier-
present the initial _experin"xent.al results obt:nnr)ed .With transform le'nis. A two-dimensiox;al array of detectors
it, %?]d summalag 1z;1ts specxalcfeatu;es and ;{mnwt}onsi measures the light intensity at discrete points in the
€ generalize dnf:-om;nt mn Of & two-dimensiona Fourier plane, giving |Gma}2. Since the function g(x,
pattern f(x, ) is defined as ¥) is bipolar in the case of geometric moments and could
® e be complex for some other choices of generating func-

Gmn = j:. j:_ f(x, y)8mn(x, y)dxdy, (1) tions, it is necessary to make the mask holographically.

In particular, a computer-generated hologram will

where gmn (x, y) is the generating function. One way provide maximum operational flexibility to the coherent
l of calculating the inner product of Eq. (1) optically is optical processor.
q to multiply the input f(x, y) by the generating function To demonstrate the operation of the coherent optical
}" Emn{x, y) and then take a two-dimensional Fourier processor described above, a computer-generated ho-
transform of the product. The moment Gm, is obtained lographic mask was constructed to compute the geo-
at the origin of the frequency plane: metric moments myy, Moy, M1y, Mog, and mey (corre-
) - e sponding to generating functions x, y, xy, x2, and y?,
- Gmn = f f F(x, Y)8mn (s y) respectively). When the hologram was constructed the
F ¢ = Jo= generating functions were scaled such that the linear-
: : and quadratic-moment values would be equal for a
- X exp[—j(ux + vy)ldxdy| ... (2
vey
t If gmn (x, y) is multiplied by a spatial carrier of the form COMERENT
g expl/(muox + nugy)), then the desired moment is ob- Neut
1 tained at 4 = mug, v = nug in the frequency plane '
r -« - iy
Gmn = f f f(x, ¥)8mn (x, y)expl=j|(u = mug)x " "T::‘;S:M
- - LEN:

+ (v = nve)ylldxdy g * (3) Fig. 1. Schematic diagram of a multiplexed coherent optical

Jance processor for calculating generalized moments.

5 ENBLOSURE ()
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Fig. 2. Plot of the generating functions x and x? with x
multiplied by a weight of 0.5.
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Fig. 3. Arrangement of the five geometric moments in the
output plane.

symmetric object three fourths the linear size of the
mask (Fig. 2). This was done to alleviate the dy-
namic-range problems in making the mask. The ar-
rangement of the five moments in the output plane is
shown in Fig. 3. The spacing was chosen to avoid cross
talk between adjacent moments. It should be noted
that the arrangement is determined by the spatinl car-
rier multiplying the different generating functions and
hence is completely under experimental control. The
computer-generated holograms, which used the Lee-
Burckhardt encoding scheme,’ contained 216 X 216
pixels and had physical dimensions of 16.2 mm X 16.2
mm. The output was detected by a video camera with
a PbO target. The v of the camera was adjusted to be
=1; hence the electrical signal was proportional to the
light intensity. The output of the camera was digitized
and stored in a minicomputer for further analysis,
The coherent optical processor was used to coleulate
these five geometric moments for simple inputs. A
photograph of the output for a binary square input
image is displayed as Fig. 4. The moments ure mea-
sured at the center of each of the five patterns. The my,
and mg; moments are seen to be zero, indicating that the
input had symmetry about the Y and \\' axes, respec-
tively. A line scan through the nty, pattern clearly
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shows the null at the center, as depicted in Fig. 5(a).
When the input was translated by ~10% of its linear
dimension along the X axis (thus removing the sym-
metry about the Y axis), a nonzero value for mg is ob-
tained, as is seen in Fig. 5(b).

The line scans through mgg and mg; moments of a
binary rectangular input with a 2:1 aspect ratio and X -
and Y-axis symmetry are displayed in Fig. 6. The
theoretical value of the ratio|maoo/mog? is 16, whereas
the experimentally measured value is 16.3, corre-
sponding to an error of ~1.9%. A detector with better
dynamic range and linearity should result in improved
accuracy.

In this Letter we have described a coherent optical
processor designed for calculating generalized moments
of a two-dimensional pattern. A computer-generated
hologram is used to encode several generating functions
on one mask with spatial-frequency encoding. This
special feature enables the processor to calculate several
moments in parallel. The use of a computer-generated
hologram makes it possible to encode complex gener- |
ating functions and permits predetermined weighting
functions to be used for dynamic-range consider-
ation.

Fig. 4. Photograph of the output of the optical processor.
The input was a square binary object with x and y sym-
metry.

Mo —*

{a) (b)

Fig. 5. (a) Line scan through the m;; moment of a hinary
square with x svmmetry. (b) Line scan through the m,

maotnent of a binary square shifted in the x direction with re-
speet Lo its position in (a).
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(a) . (b)

Fig. 6. Line scans through two geometric moments of a
rectangle with 2:1 aspect ratio: (a) myy, (b) my..

18, + B!

Fig. 7. Distribution in the output plane whenwy = 8, + B,,,,
leading to zero cross talk between adjncent moments,

The use of generating functions other than x ™y
could offer significant advantages. For given classes
of functions, certain combinations of geometric mo-
ments can be determined to be optimum for minimizing
intraclass spread while maximizing interclass separation
by using standard algorithms.” These combinations
can then be encoded directly in the computer-generated
holographic mask, thus enabling the coherent optical
processor to carry out classification of statistical pat-
terns. To extract complex-value moments in the out-
put, the four quadrature components could be treated
independently and measured as positive real num-
bers.
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T'he maximum number of moments that can be cal-
culated in parailel is determined by the single-sided
bandwidth of the system (including the computer-
genernted hologram) B,, the single-sided bandwidth of
the input function B;, and the single-sided bandwidth
of the generating function B,. Since the output con-
tnins a convolution between the Fourier transform of
the input and the Fourier transform of the generating
function, each term will be extended over a region 2(B;
+ B,,) in the frequency plane. The spacing of the mo-
ments (determined by ug in u direction and by vg in v
direction) should be such that at points (muo, nuvg) only
the G, will be nonzero; i.e., ug = vo = (B; + B.,), as is
shown in Fig. 7 for one dimension. Therefore the total
number of moments that can be calculated in parallel

is given hy
B, 2
= [0 ) = .
N [" (B,- + Bm) 1] 3)

This number can be increased substantially by using
spectrum-shaping techniques on the input; these
techniques will be discussed in a subsequent publica-
tion.

We would like to thank James Leger of the University
of California, San Diego, for providing a copy of the code
for generating the computer-generated holograms and
Marilvn Blodgett for implementing this code on the
Naval Research Laboratory's computer-film-writer
svstem.

* Permanent address, Department of Electrical En-
gineering and Computer Sciences, Clarkson College of
Technology, Potsdam, New York 13676.
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Optical matrix-matrix multiplier based on
outer product decomposition

Ravindra A. Athale and William C. Collins

U.S. Naval Research Laboratory, Washington, D.C.
20375. ’
Received 5 March 1982.

Sponsored by Joseph W. Goodman, Stanford University.

Optical processors for multiplying two matrices have been
described in the literature.!< Considerable work has been
reported recently on performing vector-matrix multiplica-
tions with incoherent optical processors.>® It is suggested
that matrix-matrix multiplications can be implemented with
these processors by inputting one matrix a row at a time while
the second matrix is encoded on a 2-D mask. The output
matrix is then available one row at a time. All these schemes
have one drawback in that they require at least one of the
input matrices on a 2-D mask, thus making it difficult to
update that matrix at high frame rates with currently available
2-D spatial light modulators (SLM). An optical processor
based on a systolic architecture was recently proposed 1o
overcome this drawback.” But such a processor requires 2N
~ 1 parallel channels to handle N X N matrices and takes 4N
clock cycles to perform one vector-matrix multiplication,
Thus it does not fully utilize the parallel processing capabil-
ities of optical systems.

These processors are all based on performing the inner
product between two vectors for generating one element of the
output vector {or matrix). Thus they use dimensionality-
reducing operations (from N to 1). An alternate approach
would involve dimensionality-increasing operations such as
an outer product between two vectors {from N to N*). Pro-
posals have been made to use the outer product between two
vectors to generate the covariance matrix of those vectors. 8.9
In this Letter we describe the application of the outer product
operations to matrix~matrix multiplication.

The matrix multiplication hetween two N X N matrices A
and B can be stated as follows10:

C=AB (1

where
N
Cii= X Auby.
hal

Thus the ijth element of C is given by the inner product he-
tween the ith row vector of A and the jth column vector of B,
Alternatively the output matrix C can be expressed as a sum
of N matrices:

N
cC=xc (2)

where

UIGHT SOURCE CROSSED PAIR OF TWO-DIMENSIONAL
LINEAR EO MODULATORS OETECTOR ARRAY
P
1
ay; sl L
2t b-‘: - |
83 ba bs A
S / b"l 4 l -
8y b, . .
| & —] by "l | s
8, bs
COLUMNS ROWS QOUTER PRODUCT
QF A OF B MATRIX C,

Fiz. 1. Schematic dingram of an 120-EO processor for matrix mul-
tiplication. The crassed pair of linear modulators and detector plane
are shown separated for the sake of clarity.

LINEAR LED LINEAR ARRAY
ARRAY OF EO MODULATORS

TWO-DIMENSIONAL
OETECTOR ARRAY

8.
*
8,
8,
COLUMNS OF ROWS OF OUTER PRODUCT
A 8 MATRIX C,_

Fig. 2. Schematic diagram of a LED-EO processor for matrix mul-
tiplication. Imaging and focusing optics are omitted.

aylyy ayidia. .. aybia
Ci=l apby aubiz...a%bin
ﬂnihil am”i? e ambin

Here each matrix term C' in the summation is seen to corre-
spond to an outer product between the ith column vector of
A and ith row vector of B, 'The outer product between two
veetors can be performed aptically by crossing two linear-array
light modulators as described in Ref. 8. The summation of
the different matrix terms in Eq. (2) can be performed ina 2-D
integrating detector array.  ‘T'o perform the operation of
matrix multiplication between two N X N matrices A and B,

15 June 1982 / Vol. 21, No. 12 / APPLIED OPTICS 2089
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the columus of A and rows of B are applied sequentintly to the
appropriate elements of the crossed pair of linear arrays of
light modulators. The light transmitted through the crossed
light modulators contains the outer product between two
vectors which is detected and summed in a 2-1) detector array.
Thus it takes N clock cycles to carry out the matrix multipli-
.cation which involves N3 multiplies and N* additions. The
optical processor, therefore, performs N? multiplies and N?
additions in parallel. In this algorithm both of the input
matrices are required one column (row) vector at a time, and
the well-developed technology of 1-D light modulators can he
utilized in building the desired optical processor.

3

The various implementations of this optical processor can
use one of the following modulation mechanisms for the linear
array of light modulators: electrooptic (EQ) modulations,
direct driven LED array, or, acoustooptic (AQ) Bragg cells.

In this Letter we describe three implementations:

(1) Encoding of both A and B via EO modulators (EO-EQ
processor) leads to a very compact optical system which does
not require any imaging or focusing components such as lenses
or fibers. The schematic diagram of the optical processor is
shown in Fig. 1, where the two crossed light modulator arrays
and detector are shown separated for the sake of clarity. The
EO modulators can be constructed out of PLZT electrouptic
ceramics which possess good switching speed and require
moderate voltages.!!

{2) The schematic diagram of the optical processor where
A is encoded via direct modulation of a LED) array and B is
encoded via EO modulators (LED-EOQ processor) is shown in
Fig. 2. Here an optical system spreads the LED array output
in the horizontal direction while focusing in the vertical di-
rection. The linear array of EQ modulators ean consist of
point madulators instead of the elongated finger modulators
required by the EO-EO scheme. The emerging light is then
imaged in both horizontal and vertical directions on a 2-1)
detector array.

{3) The optical processor based on encoding both A and B
via Bragg cells (AO-AQ processor) is similar to the crossed
Bragg cell processors described in the literature for generating
Woodward’s ambiguity functions!? (see Fig. 3). The differ-
ence in this case is that the light source is pulsed so as to freeze

PULSED LIGHT
SOURCE

CROSSED PAIR OF
BRAGG CELLS

TWO-OIMENSIONAL
OETECTOR ARRAY

OUTER PRODUCT

COLUMNS OF
A MATRIX ,

ROWS OF
]

Fig. 3. Schematic diagram of an AO-AQ pracessor for matric mul.
tiplication. Imaging optics as well as spatial filtering are omitted,

2090 APPLIED OPTICS / Vol. 21, No. 12 / 15 Juno 1982

the acoustic wave in the Bragg cell in time.  The columns of
A and rows of B modulate an rf carrier which drives the ap-
propriate Bragy cells. When all the elements of the column
(row) veetor are loaded in the Bragg cell, the light source is
pulsed and the outer product is stored in the detector
array.

The choice of a particular implementation of the processor
will be guided by the format of input matrices as well as the
constraints imposed by the volume and power consumpiion
requirements of specific applications.

The overall performance of this optical processor will be
determined by the operating characteristics of the light source,
the light inodulators, and the 2-D detector array. Since the
technologies pertaining to the light sources and 1-D modu-
lators are well-developed, the limitation on the accuracy and
throughput rate of the processor will be imposed by the 2-D
detector array. The main choices for the detector array are
going to be CCD array, photodiode array, and vidicon TV
camera. As a representative example, if one considers the
third implementation of the optical processors (AO-AQ) with
the vidicon TV camera as the detector, it is possible to mul-
tiply two positive 1000 X 1000 matrices in 30 n: .ec corre-
sponding to 3 X 10'® multiplies and 3 X 1012 adds/sec with
8-bit accuracy. Such a matrix~matrix multiplier would be
useful in 2-D mathemalical transforms, matrix inversion
problems, and pattern recognition among other tasks.

Stimulating discussions with D. Stillwell, J. N. Lee, and A.
D. Fisher are gratefully acknowledged.

References

1. R. A. Heinz, J. O. Artman, and S. H. Lee, Appl. Opt. 9, 2161

(1970).

. W.Schneider and W. Fink, Opt. Acta 22, 879 (1975).

3. P.N. Tamura and J. C. Wyant, Proc. Soc. Photo-Opt. Instrum.
Eng. 83, 97 (1976).

4. A. R. Dias, "“Incoherent Optical Matrix-Matrix Multiplier,”
Optical Information Processing for Aerospace Applications,
NASA Conference Publication 2207 (NTIS, Springfield, Va.,
1981).

5. M. A, Monaham, K. Broniley, and R. P. Bocker, Proc. IEEE 65,
121 (1977).

6. J. W. Goodman, A. R. Dins, and L. M. Woody, Opt. Lett. 2, 1
(1978).

7. H.J. Caulfield ct al., Opt. Commun, 40, 86 (1981).

8. A. Tarrasevich, N. Zepkin, and W. T, Rhodes, “Matrix Vector
Muttiplier with Time-Varving Single Dimensional Spatial Light
Modulators,” Optical Information Processing for Aerospace
Applications, NASA Coufcrence Publication 2207 (NTIS,
Springfield, Va., 1981).

9. J. M. Speiser and H. J. Whitehouse, Proc. Soc. Photo-Opt. In.
strum. Eng. 298, 41 (1981).

10. For the sake of convenience we will deal with square matrices,
although extension to nonsquare matrices will be straightfor-
ward.

11. K. Ueno and 'T. Saku, Appl. Opt. 19, 164 (1980).

12. J. D. Cohen, "Ambiguity Processor Architecture Using One-
Dimensional Acousto-Optic Transducers,” in Proc. Soc. Photo-
Opt. Instrum, Fng. 180, 134 (1979).

[




v

T Y

o ek 4 !‘TY-V'Y Ty

\ AN an . aam o ih e o an o
-

TTTTY
3

PPy
-

—

124 OPTICS LETTERS / Vol. 7. No.3 / March 1982

Optical implementation of integral transforms with Bessel
function kernels

R. A. Athale, H. H. Szu, and J. N. Lee

. . Navel Reseurch Laboratory, Washington, D.C. 20375

Received November 12, 1981

Integral transforms involving Bessel function kernels are useful in analvzing effects of circularly symmetric optical
systems on arbitrary inputs. Methods for performing the integral transforms optically are divided into two catego-
ries. The first category involves input data available in cartesian (x, y) format and uses the close connection be-
tween the desired integral transform and the two-dimensional Fourier transform in cartesian coordinates. The
second category invoives input data in polar (7, #) format and uses methods such as change of variables to perform
the integral transform as a correlation integral. Experimental results obtained with optical implementation for

these two categories are presented.

The analysis of complex optical systems is greatly fa-
cilitated by two-dimensional.Fourier transform tech-
niques. The effect of an optical system on arbitrary
inputs is easily described by a transfer function in the
Fourier domain. Integral transforms involving Bessel
functions are similarly useful when dealing with circu-
larly symmetric (or axisymmetric) systems for arbitrary
inputs.! This problem is encountered in the mode
analysis on the output of a slightly misaligned laser
resor.ator2 or in the alignment of space telescopes. An
optical method for performing mode analyvsis via inte-
gral transforms will have the unique advantage of pre-
serving the phase of the wave front to be analyzed, in
contrast to the more usual methods involving mea-
surement of the intensity of the wave front.

It is well known that when a two-dimensional func-
tion has circular symmetry, its Fourier transform is also
circularly symmetric. It can be shown that in such a
case the Fourier transform is equivalent to the Hankel
transform of the input, which is defined as

Folp) = j; " f(r)Jotpryrdr, (1)

where Jo(pr) is the zeroth-order Bessel function.* Thus
in dealing with circularly symmetric systems, the
Hankel transform (which is a one-dimensional integral)
can be used instead of the two-dimensional Fourier
transform if the inputs are also circularly symmetric.
This technique can be extended to functions of the form
f(r) exp(jn8) (n-fold symmetric) by using the Hankel
transform of order n defined as

Fa(p) = j; " {(F)a or)rdr, (2a)

where J,, (pr) is the nth-order Bessel function. In this
case the two-dimensional Fourier transform with re-
spect to (x, y)—indicated by FT»—is related to I, (p)
by!

FT[f(r) exp(n®)] = 27F, (p) exp(—=jnd), (2h)

where (p, @) are polar variables in the Fourier plane.
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The generalized Hankel transform, F,,(p), can be
defined for an arbitrary function f(r, 6) as follows!:

f(r,0) = 5 falr) exp(ind), (3a)

nw—am

Fanlp) = ‘j; WAGYAT g (3b)

The generalized Hankel transform thus involves a
Fourier series expansion of f(r, ) with respect to- 4,
followed by the operation of the Hankel transform of
order n on f,(r). In the following we will describe
techniques and experimental results for optical imple-
mentation of the generalized Haitkel transforms.
These various techniques are each applicable in dif-
ferent circumstances.

In optical processors a two-dimensional Fourier
transform with respect to the cartesian coordinates (x,
v) is performed very easily with the help of a simple
spherical lens.* The equivalence of the two-dimen-
sional Fourier transform and the Hankel transform for
circularly symmetric functions was noted above. For
arbitrary functions, f(x, y), the following relation ex-
ists:

FTalf(x, ¥)] = F(p, ¢) =27 _f'. Fanl(p) exp(—jne),
(4)

where F(p, ¢) is the two-dimensional Fourier transform
of the input in terms of the polar coordinates (p, ¢).
The generalized Hankel coefficients F,,(p) can thus be
extracted by performing a one-dimensional Fourier
transform on F(p, ¢) with respect to ¢.

Fan® = { F(p, ¢) expline)do. (5)

-
Therefore, a spherical lens first performs the two-
dimensional Fourier transform with respect to the
cartesian coordinates on the input. A suitably designed
computer-generated hologram then performs the
coordinate transformation (cartesian to polar) on the
Fourier transform, generating F(p, ¢).> This is followed
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Fig. 1. Experimental results for zeroth-order Hankel
transform, Folp), of (r — a). (a) Photograph of the output.
(b) A plot of |Jalap)|?, which is the theoretically expected
result. (c) A line scan through the origin of the pattern in (a),
giving | Fy{p)|? versus p.
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Fig. 2. Experimental results for first-order Hankel trans-

form, F\(p), of 8(r —a). (a) A plot of |J/y(ap)i* versus p, which

is the theoretically expected result. (b) A line scan through

the origin of the two-dimensional Fourier transform, giving
}F1(p))2 versus p.

by a cylindrical lens to implement the one-dimensional
Fourier transform with respect to ¢.

Initial optical experiments established the connection
between a two-dimensional Fourier transform with
respect to cartesian coordinates and a Hankel transform
of order n for a function of the form f(r) expynf) [Eq.
(2b)]. The optical system used was a standard two-
dimensional Fourier-transform arrangement.! A
computer-generated hologram was used to encode a
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exp(jnl) dgpendence onto the input. The output was
detected by a TV camera, which measures the light in-
tensity in the Fourier plane of the input. The input
used in these experiments had an r dependence given
by é(r — a), thus corresponding to a thin ring of radius
a in the cartesian (x, y) plane, The nth-order Hankel
transform of 6(r — a) is a J,(ap), thus allowing easy
comparison with experiments. Figure 1 shows the re-
sults corresponding to the Hankel transform {i.e.,n =
0 and exp(jn0) = 1]. In Fig. 1(b) the function |Jolap)|?
is plotted, which is then compared with a line scan
through the origin [Fig. 1(c)] of the output shown in Fig.
1{a), i.e., ¢ = 0. Very good qualitative agreement be-
tween the theoretical and experimental results is ob-
tained. Figures 2(a) and 2(b) present the results for the
Hankel transform of order one for the same f(r), i.e., 6(r
~ a) [but here the 8 dependence is exp(j8)]. Again good
qualitative agreement was seen between theory and
experiment. This system also performed the Hankel
transform of order two on the same input with good
results.b

If the input is polar (r,d) formatted, the direct ap-
proach given in Eq. (3) has to be followed in obtaining
the generalized Hankel transform. The first part of the
operation, which involves a Fourier series expansion in
variable /], requires the r and 0 coordinates be mapped
along orthogonal axes. Then Eq. 3(a) is performed
optically using a cylindrical lens. The calculation of the
Hankel transform of order n of f,(r), the nth coefficient
of expansion, is less straightforward, since it involves
optically performing a space-variant operation; hence,
this was the main aim here.

One way of converting a space-variant operation into
a shift-invariant operation is to employ appropriate
change of variables. In the case of the Hankel trans-
forms of order n, the following procedure was described
by Siegman for implementing the space-variant oper-
ation as a correlation integral on a digital processor.”
From the definition (2a) one obtains

Fa) = [ 1e)atx + y)ds, ®)

where r = ryexplax), p = po explay), Fo(y) = pF,(p),
[(x) = rf(r), J.(x + y) = arpJd,(rp). The algorithm.
therefore, consists of first linearly weighting the input
f(r) and performing the r — x coordinates transform.
This new input is then correlated with a similarly
weighted and coordinate transformed nth-order Bessel
function to give the desired Hankel transform also in
linearly weighted and coordinate-distorted form. In
any physical system the correlation integral will be
performed over a finite interval, giving rise to truncation
errors. Also, if the input is sampled in the x domain,
the sampling rate should be adequate to represent the
function accurateiy in the x domain.”8

Since the operations of coordinate transformation
and correlation can be performed by an optical pro-
cessor, an optical system can be designed and used to
calculate Fnn{p). Computer-generated holograms can
be used to perform r — x coordinate transformation as
well as to encode the Fourier plane filter with impulse
response J.(x) in a one-dimensional correlator. The
second dimension of the optical processor can be used
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to perform different-order Hankel transforms on dif-
ferent inputs, thus achieving multichannel operation.
In the experiments, both the input and the Fourier
plane filter were encoded by computer-generated ho-
lograms. The linear weighting and the coordinate
transformation of the input was performed by the dig-
ital computer before doing the holographic encoding.
The computer-generated holograms used the lLee-
Burckhardt technique® and contained 128 pixels. The
optical system is depicted in Fig. 3. This system was
*then used to perform the Hankel transform on two
different inputs f,(r) = p1Jolp1r) and falr) = padolpar).
The Hankel transform of f,(r) and f+(r) should be é(p
— p1) and 8(p — p3), respectively. The results of a
computer simulation of this algorithm are depicted in
Fig. 4. The finite width of the peak and the appearance
of sidelobes are due to the finite limits of integration.
To facilitate easy comparison with the experimental
results | Fo(y)|% was plotted versus y instead of Fy(p)
versus p. Figure 5 shows the experimental results ob-
tained. The optical output was detected by a 1024-
element Reticon linear photodiode array. The shift in
peak heights (owing to the linear weight) is evident,
indicating good qualitative agreement with the com-
puter-simulation results.

This method investigates an approach based on the
special properties of Bessel functions. If the input f(r)
is correlated with J,,{pr) then the Hankel coefficient
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Fig. 3. Theschematic diagram of the experimental setup for
performing the one-dimensional correlation between the
linearly weighted and coordinate-transformed input, /(x), and
similarly weighted and transformed Bessel function J(x).

JolA 1)
IR N ()
w®
Fig. 4. The results of the computer simulation of zeroth-

order Hankel transform of piJa(mr) and pelu(por). "The
linearly weighted and coordinate transformed Hankel coct-
ficients, | Foly)]2, is plotted versus y. Here p = 2py.

Fig. 5. The oscilloscope traces of the output of the optical
processor performing the zeroth-order Hankel transform.
The traces correspond to | Fo(y)|2 versus y for the two inputs.
(a) For input f,(r) = pyJo(pyr). (b) For input fa(r) =
pulpar), where ps = 2py.

of order m, Fp,(p), is obtained at the origin of the cor-
relation plane.

Fn(p) = j:).f(r)Jm [or + M)rdrlree. (T

The Neumann addition theorem for Bessel functions
states that

Inlpr+ N = 5 Jnenlor)dator).  (8)

ne—-c

Substituting for Jm [o(r + r’)] from Eq. (8) into Eq. (7)
we get

j; " HP)mlptr + r)rdr

“m/(r) f Im-nlor’)Jp(pr)rdr

n*—o

i Im-nlpr’)Fa(p). (9)

N

Thus, il is seen that the correlation plane contains a sum
of Bessel functions of different order weighted by
Hankel transform coefficients evaluated at p, of corre-
sponding order. In principle it is possible to extract
Hankel transform coefficients of different order out of
a single one-dimensional correlation operation. The
other dimension of a two-dimensional optical processor
can be used to perform correlations with Jm, (or) with
different values of p.
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